What We Do
How we do it
Oct 19, 2021
Hackers Infect Employees of Law Firms, Manufacturing Companies, and Financial Services Orgs. with Increasingly Pervasive Infostealer, SolarMarker
SolarMarker Infects 5X More Corporate Victims Using Over a Million Poisoned WordPress Pages Key Takeaways eSentire has observed a fivefold increase in SolarMarker infections. Prior to September, eSentire’s Threat Response Unit (TRU) detected and shut down one infection per week. Beginning in September, TRU averaged the detection and shutdown of five per week. SolarMarker is a…
Read More
View all Advisories →
About Us
eSentire is The Authority in Managed Detection and Response Services, protecting the critical data and applications of 1000+ organizations in 70+ countries from known and unknown cyber threats. Founded in 2001, the company’s mission is to hunt, investigate and stop cyber threats before they become business disrupting events.
Read about how we got here
Leadership Work at eSentire
Oct 12, 2021
eSentire Launches MDR with Microsoft Azure Sentinel Extending Response Capabilities Across Entire Microsoft Security Ecosystem
Waterloo, ON – Oct. 12, 2021 -- eSentire, recognized globally as the Authority in Managed Detection and Response (MDR), today announced the expansion of its award-winning MDR services with Microsoft Azure Sentinel, as part of its integration with the complete Microsoft 365 Defender and Azure Defender product suites supporting Microsoft SIEM, endpoint, identity, email and cloud security services.…
Read More
Our award-winning partner program offers financial rewards, sales and marketing tools and personalized training. Accelerate your business and grow your revenue by offering our world-class Managed Detection and Response (MDR) services.
Learn about our Partner Program
Apply today to partner with the Authority in Managed Detection and Response.
Login to the Partner Portal for resources and content for current partners.
Blog — Sep 28, 2020

The SunWalker Incident: Netwalker and SunCrypt Ransomware Double-Double Exploitation


After eight long hours attempting to siege an online education institution – including initial access, lateral movement, and ransomware deployment - an unidentified threat actor withdraws. Through the combined effort of proactive and reactive security measures, the learning institution and eSentire’s defense teams worked together to deflect hands-on attack paths through a synthesis of automatic and manual defense actions. Eight hours of siege telemetry gives interesting insights into threat actor choices and behaviors, key among them: what brings both the SunCrypt and Netwalker ransomware families together in one attack? After a look at the timeline of interesting behaviors in this eight-hour attempt at Double Extortion, we briefly cover candidate hypotheses.


Public events through August report observations of the SunCrypt ransomware group infiltrating educational institutions [1], while the FBI reported similar targeting of educational institution for Netwalker in July [2]. Like the Maze ransomware group, both groups follow the recent underground market business model in ransomware tactics: Double Extortion. Double Extortion occurs when threat actors successfully a) exfiltrate sensitive data from the targeted organization and b) encrypt critical files within the organization. Both actions can give threat actors considerable leverage for extorting ransom funds from their victims. SunCrypt recently claimed they were part of the Maze Cartel – a social contract between various ransomware groups working together to optimize the many phases of a ransomware deployment attack – but the Maze ransomware group has denied their claim [1]. Observations of SunCrypt and Netwalker ransomwares in the same session does raise the question of whether the Maze Cartel, another ransomware group, or an independent threat actor are behind the attack. The threat actor’s tactics – from initial access to deployment – appear to fall in line with NetWalker’s observed playbook [3]. However, given the public knowledge of such tactics and availability of tools involved, we cannot completely rule out an independent actor. We will briefly explore each hypothesis after disclosing the timeline of the attack, reflecting on winning factors in the resulting battle of attrition.

Key Events in Timeline:

Minutes past the zeroth hour (labeled 12PM), the VPN pool of the organization and one of their workstation endpoints (labeled system zero) received successful connections via an unknown IP address. An hour later (1 PM), a member of the VPN pool successfully logged in to workstation zero via RDP using organization account A (initial access: valid account [4]). Using a service account (B) that had recently been created (+), they re-established RDP with the new account on machine zero (privilege escalation: valid account [4]) and executed mimikatz [5] via PowerShell (credential theft: credentials from password stores [6]). This activity was detected at eSentire’s Security Operations Center and the host was put into isolation. A broader investigation was opened to assess initial access and active response actions. Once the VPN was identified as a vector, the organization shut down the compromised VPN tunnel. Minutes later, the threat actor switched to another tunnel and, once again, the second tunnel was shut down. At this point, no active traces of intrusion were present. Four hours later, (approx. 7:30 PM) likely using the valid credentials they had retrieved through credential theft, the intruder quietly logged into a second machine (two) with account B and dropped SunCrypt ransomware to disk, followed by an attempt to deploy it to other hosts (two->many) on the network (deployment: lateral tool transfer [7]) via psexec [8]. This raised an alert and activated standby defense teams. In the moments before host two was isolated, the intruder attempted to enable psexec via services. Experiencing interference from endpoint defense, they downloaded and used an AV uninstaller program – often used to resolve conflicts between AV software and attempted to execute it. The also used account D to get on the domain controllers (DC) and perform more domain recon before, finally, attempting to execute (execution [9]) an instance of Netwalker Ransomware on the lone endpoint – which also failed. The host was isolated, and the defense teams remained on alert, actively investigating for artifacts and return attempts. After execution, the intruder attempted to delete ransomware samples but wasn‘t able to empty the recycle bin before host isolation, leaving samples for analysis.

Fig 1. Timeline of events. Timeline has been shifted to obscure details. Each system has its own row in the graph, while each account is represented by a distinct marker type. Action performed by adversaries is colored red, Defensive actions are colored blue, and actions that occurred independent of the incident are colored green.

Attribution Hypotheses

Hypotheses are presented in order of apparent evidence, but keep in mind that strong circumstantial evidence can sometimes be a result of deception. Social engineering and reputation attacks are, after all, a common tactic in organized crime and conflict. eSentire Threat Intelligence draws no final conclusions about attribution given the limited ground truth available about adversaries involved.

Looking at Microsoft’s Q2 Ransomware report [3], the attack path is reminiscent of NetWalker Ransomware group:

Battle of Attrition

A multi-layered defense went a long way to deflecting the intruder’s numerous access, lateral movement, and execution attempts. When threat actors find organizations with poor perimeter controls or have driven motives to compromise a particular target, they can make several attempts at compromise. If they have collected credentials and performed domain reconnaissance in any of their attempts, they can return through different accounts and systems in future attempts with valid credentials which require no exploits or malspam-based execution abuses and do not, therefore, raise alerts. However, a multi-layered security posture can provide organizational resilience against the final goal of these attacks by interrupting malicious actions as they are performed by the threat actor. Such threat actors may theoretically achieve their objectives given enough time and resources. The job of the defense team is to make it more trouble than it's worth. In the meantime, eSentire advises keeping an eye on the latest remote vulnerabilities – often targeted by ransomware groups [11].

In this case, pro-defensive attrition actions include:

Detection, investigation, and response tools used:


[1] https://www.bleepingcomputer.com/news/security/suncrypt-ransomware-sheds-light-on-the-maze-ransomware-cartel/

[2] https://healthitsecurity.com/news/fbi-alerts-to-rise-in-targeted-netwalker-ransomware-attacks

[3] https://www.microsoft.com/security/blog/2020/04/28/ransomware-groups-continue-to-target-healthcare-critical-services-heres-how-to-reduce-risk/

[4] https://attack.mitre.org/techniques/T1078/003/

[5] https://attack.mitre.org/software/S0002/

[6] https://attack.mitre.org/techniques/T1555/

[7] https://attack.mitre.org/techniques/T1570/

[8] https://attack.mitre.org/software/S0029/

[9] https://attack.mitre.org/tactics/TA0002/

[10] https://www.acronis.com/en-us/blog/posts/suncrypt-adopts-attacking-techniques-netwalker-and-maze-ransomware

[11] https://www.esentire.com/security-advisories/ransomware-groups-exploit-remote-access-services

eSentire Threat Intel
eSentire Threat Intel Threat Intelligence Research Group