Cyber risk and advisory programs that identify security gaps and build strategies to address them.
MDR that provides improved detection, 24/7 threat hunting, end-to-end coverage and most of all, complete Response.
Our team delivers the fastest response time in the industry. Threat suppression within just 4 hours of being engaged.
Be protected by the best from Day 1.
24/7 Threat Investigation and Response.
Expert hunting, research and content.
Defend brute force attacks, active intrusions and unauthorized scans.
Safeguard endpoints 24/7 by isolating and remediating threats to prevent lateral spread.
Investigation and enhanced threat detection across multi-cloud or hybrid environments.
Configuration escalations, policy and posture management.
Detects malicious insider behavior leveraging Machine Learning models.
Customer testimonials and case studies.
Stories on cyberattacks, customers, employees, and more.
Cyber incident, analyst, and thought leadership reports.
Demonstrations, seminars and presentations on cybersecurity topics.
Information and solution briefs for our services.
MITRE ATT&CK Framework, Cybersecurity Assessment, SOC Calculator & more
As originally posted on Enterprise CIO on March 27, 2019
In light of today’s digital transformation causing businesses to operate at machine speeds, organisations need a new way to spot and resolve possible security events. Network operations have become automated, but so have cyber threats. The speed and scale of these threats requires a response that has exceeded analysts’ ability.
That doesn’t mean skilled cybersecurity analysts are unnecessary. Rather, it’s a question of designing a suitable technology partner to compensate for human error and resource limitations within security strategies. It’s a matter of how chief information officers can leverage new, advanced technologies to match the scale and complexity of the evolving threat landscape.
Major attacks such as the Mirai botnet distributed denial of service (DDoS) and WannaCry ransomware are a clear demonstration of the scope and breadth of cyber threat actors exceeding what was previously thought possible. Furthermore, 2.6 billion records were compromised worldwide in 2017, an 87 percent increase over 2016, which translates to 7.1 million records that are stolen or lost per day.
The democratisation of the tools and knowledge required to execute advanced cyber threats is a key reason for the escalated threat environment. You no longer have to be a nation-state to have access to sophisticated hacking tools. Malware-as-a service, in all of its guises, is readily available on the Dark Web and sold on a commission basis. Anyone who wants to make a fast buck and knows how to get on the Dark Web can become a hacker. The goal posts have changed.
Cybercriminals are the primary culprits behind machine-scale threats, but they are not alone. Whether by an innocent mistake or sheer carelessness, employees play a role as well. The complexity and scale of today’s digitiSed platforms pose a serious challenge to traditional models of security, as there is still a probability of human error.
Enterprise cybersecurity is complex, and there are multiple reasons why securing it now requires an integrated AI and expert analyst approach:
Given these influences, what technologies should CIOs choose? These machine-scale problems require machine-scale solutions, like machine learning. But the conversation needs to be about how to apply these technologies in the rightway, to augment the analyst, not replace them. The use of integrated machine learning can have a pertinent and powerful impact on its application in cybersecurity.
Organisations need a new cybersecurity framework to effectively use ML or, more broadly, AI. Instead of looking for low-level patterns in siloed data and then aggregating the output, the focus should be on looking for the patterns that matter in data that is aggregated across many sources.
Using these tools within an integrated approach will optimise the use of these new technologies, ensuring that the data used to determine cybersecurity incident trends and patterns are relevant, informative and accurate.
The promise of AI is to help organisations automate the time-consuming process of analysing the data to understand a threat and to augment their analysts’ capabilities, who then must add context and determine how to respond.
There are three phases of change management in the evolution from human-scale to machine-scale in cybersecurity defense. These are:
Cybersecurity seems to get harder with every new exploit and vulnerability, but CIOs now have access to more effective weapons, including AI and ML. Victory over today’s advanced threats requires human-machine collaboration, using integrated AI platforms that empower analysts. This is the strategy that will turn the cybersecurity tide.